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Memory T cellsinduced by previous pathogens can shape susceptibility to,and

the clinical severity of, subsequent infections'. Little isknown about the presence in
humans of pre-existing memory T cells that have the potential to recognize severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2). Here we studied T cell responses
against the structural (nucleocapsid (N) protein) and non-structural (NSP7 and NSP13 of
ORFI) regions of SARS-CoV-2 inindividuals convalescing from coronavirus disease 2019
(COVID-19) (n=36).Inall of these individuals, we found CD4 and CD8T cells that
recognized multiple regions of the N protein. Next, we showed that patients (n=23) who
recovered from SARS (the disease associated with SARS-CoV infection) possess
long-lasting memory T cells that are reactive to the N protein of SARS-CoV 17 years after
the outbreak of SARS in2003; these T cells displayed robust cross-reactivity tothe N
protein of SARS-CoV-2. We also detected SARS-CoV-2-specific T cellsinindividuals with
no history of SARS, COVID-19 or contact withindividuals who had SARS and/or COVID-19
(n=37).SARS-CoV-2-specific T cellsin uninfected donors exhibited a different pattern of
immunodominance, and frequently targeted NSP7 and NSP13 as well as the N protein.
Epitope characterization of NSP7-specific T cells showed the recognition of protein
fragments that are conserved among animal betacoronaviruses but have low homology to
‘common cold’ human-associated coronaviruses. Thus, infection with betacoronaviruses
induces multi-specific and long-lasting T cellimmunity against the structural N protein.
Understanding how pre-existing N-and ORF1-specific T cells that are presentin the
general population affect the susceptibility to and pathogenesis of SARS-CoV-2 infection

isimportant for the management of the current COVID-19 pandemic.

SARS-CoV-2is the cause of COVID-192 This disease has been declared
a pandemic by the World Health Organization (WHO), and is having
severe effects on bothindividual lives and economies around the world.
Infection with SARS-CoV-2 is characterized by a broad spectrum of
clinical syndromes, which range from asymptomatic disease or mild
influenza-like symptoms to severe pneumonia and acute respiratory
distress syndrome®.

Itis common to observe the ability of a single virus to cause widely
differing pathological manifestations in humans. This is often due to
multiple contributing factorsincluding the size of the viralinoculum,
the genetic background of patients and the presence of concomitant
pathological conditions. Moreover, an established adaptive immunity
towards closely related viruses* or other microorganisms® canreduce
susceptibility® or enhance disease severity’.

SARS-CoV-2 belongs to the Coronaviridae, a family of large RNA
viruses that infect many animal species. Six other coronaviruses

are known to infect humans. Four of them are endemically trans-
mitted® and cause the common cold (0C43, HKU1, 229E and NL63),
while SARS-CoV and Middle East respiratory syndrome coronavirus
(MERS-CoV) have caused epidemics of severe pneumonia®. All of
these coronaviruses trigger antibody and T cell responses in infected
patients: however, antibody levels appear to wane faster than T cells.
SARS-CoV-specific antibodies dropped below the limit of detection
within 2 to 3 years'®, whereas SARS-CoV-specific memory T cells have
been detected even 11 years after SARS™. As the sequences of selected
structural and non-structural proteins are highly conserved among
different coronaviruses (for example, NSP7 and NSP13 are 100% and
99% identical, respectively, between SARS-CoV-2, SARS-CoV and
the bat-associated bat-SL-CoVZXC21?), we investigated whether
cross-reactive SARS-CoV-2-specific T cells are present in individuals
who resolved SARS-CoV, and compared the responses with those pre-
sentinindividuals who recovered from SARS-CoV-2 infection. We also
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Fig.1|SARS-CoV-2-specificresponsesinpatientsrecovered from
COVID-19. a, SARS-CoV-2 proteome organization; analysed proteins are
marked by anasterisk. b, The15-mer peptides, which overlapped by 10 amino
acids, comprising the N protein, NSP7 and NSP13 were splitinto 6 pools
coveringthe N protein (N-1, N-2), NSP7 and NSP13 (NSP13-1, NSP13-2, NSP13-3).
¢, PBMCs of patients who recovered from COVID-19 (n=36) were stimulated
withthe peptide pools or with phorbol 12-myristate 13-acetate (PMA) and
ionomycin (iono) as a positive control. The frequency of spot-forming units
(SFU) of IFNy-secreting cellsis shown. d, The composition of the SARS-CoV-2

studied these T cellsinindividuals with no history of SARS or COVID-19
or of contact with patients with SARS-CoV-2. Collectively these indi-
viduals are hereafter referred to as individuals who were not exposed
to SARS-CoV and SARS-CoV-2 (unexposed donors).

SARS-CoV-2-specific T cells in patients with COVID-19

SARS-CoV-2-specific T cells have just started to be characterized for
patients with COVID-19"** and their potential protective role has
been inferred from studies of patients who recovered from SARS®™
and MERS. To study SARS-CoV-2-specific T cells associated with viral
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responseineachindividual is shownasapercentage of the total detected
response.N-1, light blue; N-2, dark blue; NSP7, orange; NSP13-1, light red;
NSP13-2, red; NSP13-3, dark red. e, PBMCs were stimulated with the peptide
poolscoveringthe N protein (N-1, N-2) for 5h and analysed by intracellular
cytokinestaining. Dot plots show examples of patients (2 out of 7) that had CD4
and/or CD8T cells that produced IFNy and/or TNF in response to stimulation
withN-1and/orN-2 peptides. The percentage of SARS-CoV-2N-peptide-reactive
CD4and CD8Tcellsinn=7individuals are shown (unstimulated controls were
subtracted for eachresponse).

clearance, we collected peripheral blood from 36 individuals after
recovery frommild to severe COVID-19 (demographic, clinical and viro-
logical informationisincluded in Extended Data Table 1) and studied
the T cell response against selected structural (N) and non-structural
proteins (NSP7 and NSP13 of ORF1) of the large SARS-CoV-2 proteome
(Fig.1a). We selected the N protein as it is one of the more-abundant
structural proteins produced” and has a high degree of homology
between different betacoranaviruses' (Extended Data Fig. 1).

NSP7 and NSP13 were selected for their complete homology between
SARS-CoV, SARS-CoV-2 and other animal coronaviruses that belong
to the betacoranavirus genus™ (Extended Data Fig. 2), and because



a N peptide pools (419 amino acids)

Amino acids  1-45 36-80 71-115 106-150 141-185 176-220 211-255 246-290 281-325 316-360 351-395 386-419
0 ) "2 0 0 >0 “0 0 0 612 "0 =1 >

/

L T \ .V

Pool 1 | Pool 2 | Pool 3 | Pool 4 | Pool 5 | Pool 6 | Pool 7 | Pool 8 | Pool 9 |Pool 10|Pool 11|Pool 12

c-1 - - + - - - - - - + - -
C-4 - - - + - - - + + - - -
C-18 - - + - - - + + + + - -
*C-8 - + - + - - + + - + - -
*C-10 - - - - + + + - - + - -
“C-11 - - + - - - - - - - - -
*C-12 + - - + - - + - - + - -
*C-14 - - + - - - + + - + - -
*C-15 - - + + - - + + - - - -

IFNy ELISPOT response against individual N peptide pools

b Patient C-1

Unstimulated

Patient C-4
N(266-280)

Patient C-12
Unstimulated Unstimulated

10°178.9,

1 10°181.1 0.18 1.56 1429 0.41
1 5
110t l? 104 g 104

'3 [ i 1
i

3 o] o] |

10 103 10—
\ood o
I 5
|
I
i
i
I
i
I

.
0.043  _y50119. 0.084
-10° 0 10° 10¢ 10° -10% 0 10° 10 10°

N(291-305)

CD4-PE-Cy7
z
®
8

1.07 1051804, 052

CD8-APC-Cy7

'
0,080 _gpi19.0 0.001
HE D00 of 08 1070 108 10t 108

TNF-APC

1080108 10 108

Fig.2|SARS-CoV-2-specific T cellsin COVID-19 convalescent individuals
target multiple regions of the N protein. a, PBMCs of 9 individuals who
recovered from COVID-19 were stimulated with12 different pools of 7-8 N
peptides. The table shows IFNy ELISpot responses against the individual N
peptide pools. The asterisk denotes responses detected after in vitro
expansion. b, Afterinvitro cell expansion, a peptide pool matrix strategy was
used. T cellsthat reacted to distinct peptides were identified by IFNy ELISpot
and confirmed by ICS. Representative dot plots of 3 out of 7 patients are shown.

they are representative of the ORFla/b polyprotein that encodes the
replicase-transcriptase complex'. This polyprotein is the first to be
translated after infection with coronavirus and is essential for the subse-
quent transcription of the genomic and sub-genomic RNA species that
encode the structural proteins®. We synthesized 216 15-mer peptides
that overlapped by 10 amino acids and that covered the whole length
of NSP7 (83 amino acids), NSP13 (601 amino acids) and N (422 amino

Table 1| SARS-CoV-2-specific T cell epitopes

acids) and split these peptides into five pools of approximately 40
peptides each (N-1,N-2, NSP13-1, NSP13-2 and NSP13-3) and a single pool
of15 peptides that spanned NSP7 (Fig. 1b). This unbiased method with
overlapping peptides was used instead of bioinformatics selection of
peptides, as the performance of such algorithms is often sub-optimal
in Asian populations®.

Peripheral blood mononuclear cells (PBMCs) of 36 patients who
recovered from COVID-19 were stimulated for 18 h with the differ-
ent peptide pools and virus-specific responses were analysed by
interferon-y (IFNy) ELISpot assay. In all individuals tested (36 out of
36), we detected IFNy spots after stimulation with the pools of synthetic
peptides that covered the N protein (Fig. 1c, d). In nearly all individu-
als, N-specific responses could be identified against multiple regions
of the protein: 34 out of 36 individuals showed reactivity against the
region that comprised amino acids 1-215 (N-1) and 36 out of 36 indi-
viduals showed reactivity against the region comprising amino acids
206-419 (N-2). By contrast, responses to NSP7 and NSP13 peptide pools
were detected at very low levels in12 out of 36 COVID-19-convalescent
individuals tested.

Direct ex vivo intracellular cytokine staining (ICS) was performed
to confirm and define the N-specific IFNy ELISpot response. Owing to
their relative low frequency, N-specific T cells were more difficult to
visualize by ICS than by ELISpot; however, a clear population of CD4
and/or CD8 T cells that produced IFNy and/or TNF was detectable
in seven out of nine analysed individuals (Fig. 1e and Extended Data
Figs. 3, 4). Moreover, despite the small sample size, we could com-
pare the frequency of SARS-CoV-2-specific IFNy spots with the pres-
ence of virus-neutralizing antibodies, the duration of infection and
disease severity and found no correlations (Extended Data Fig. 5). To
confirm and further delineate the multi-specificity of the N-specific
responses detected ex vivo in patients who recovered from COVID-19,
we mapped the precise regions of the N protein thatis able to activate
IFNy responses in nine individuals. We organized the 82 overlapping
peptides that covered the entire N proteininto small peptide pools (of
7-8 peptides) that were used to stimulate PBMCs either directly ex vivo
or after an in vitro expansion protocol that has previously been used
for patients with hepatitis B virus* or SARS*. A schematic representa-
tion of the peptide pools is shown in Fig. 2a. We found that 8 out of 9
patients who recovered from COVID-19 had PBMCs that recognized
multiple regions of the N protein of SARS-CoV-2 (Fig. 2a). Notably, we
then defined single peptides that were able to activate T cellsin seven
patients. Using a peptide matrix strategy?, we first deconvolved the
individual peptides that were responsible for the detected response
by IFNy ELISpot. Subsequently, we confirmed theidentity of the single
peptides by testing—using ICS—the ability of the peptides to activate

Participants T cell phenotype Protein (amino acid residues) SARS-CoV-2 amino acid sequence SARS-CoV amino acid sequence
CA1 CD4 N (81-95) DDQIGYYRRATRRIR DDQIGYYRRATRRVR

CD8 N (321-340) GMEVTPSGTWLTYTGAIKLD GMEVTPSGTWLTYHGAIKLD
C-4 CD4 N (266-280) KAYNVTQAFGRRGPE KQYNVTQAFGRRGPE

CD4 N (291-305) LIRQGTDYKHWPQIA LIRQGTDYKHWPQIA

CD4 N (301-315) WPQIAQFAPSASAFF WPQIAQFAPSASAFF
C-8 CD4 N (51-65) SWFTALTQHGKEDLK SWFTALTQHGKEELR

CD4 N (101-120) MKDLSPRWYFYYLGTGPEAG MKELSPRWYFYYLGTGPEAS
C-10 CD4 and CD8 N (321-340) GMEVTPSGTWLTYTGAIKLD GMEVTPSGTWLTYHGAIKLD
C-12 CD8 N (321-340) GMEVTPSGTWLTYTGAIKLD GMEVTPSGTWLTYHGAIKLD
C-15 CD4 N (101-120) MKDLSPRWYFYYLGTGPEAG MKELSPRWYFYYLGTGPEAS
C-16 CD4 NSP7(21-35) RVESSSKLWAQCVQL RVESSSKLWAQCVQL

T cells that react with distinct peptides were identified by IFNy ELISpot and confirmed by ICS. Previously described T cell epitopes for SARS-CoV are highlighted in bold; non-conserved amino

acid residues between SARS-CoV and SARS-CoV-2 are underlined.
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CD4 or CDS8T cells (Table 1and Fig. 2b). Table 1 summarizes the dif-
ferent T cell epitopes that were defined by both ELISpot and ICS for
sevenindividuals whorecovered from COVID-19. Notably, we observed
that COVID-19-convalescent individuals developed T cells that were
specific to regions that were also targeted by T cells from individuals
who recovered from SARS. For example, the region of amino acids
101-120 of the N protein, which is a previously described CD4 T cell
epitope in SARS-CoV-exposed individuals™??, also stimulated CD4
T cellsintwo COVID-19-convalescent individuals. Similarly, the region
of amino acids 321-340 of the N protein contained epitopes that trig-
gered CD4 and CDS8 T cells in patients who recovered from either
COVID-19 or from SARS?. The finding that patients who recovered
from COVID-19 and SARS can mount T cell responses against shared
viral determinants suggests that previous SARS-CoV infection can
induce T cells that are able to cross-react against SARS-CoV-2.

SARS-CoV-2-specific T cells in patients with SARS

For the management of the current pandemic and for vaccine devel-
opment against SARS-CoV-2, it is important to understand whether
acquired immunity will be long-lasting. We have previously demon-
strated that patients who recovered from SARS have T cells that are
specific to epitopes within different SARS-CoV proteins that persist
for 11years after infection™. Here, we collected PBMCs 17 years after
SARS-CoVinfection and tested whether they still contained cells that
were reactive against SARS-CoV and whether these had cross-reactive
potential against SARS-CoV-2 peptides. PBMCs from individuals who
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hadresolved a SARS-CoV infection (n=15) were stimulated directly ex
vivo with peptide pools that covered the N protein of SARS-CoV (N-1and
N-2),NSP7 and NSP13 (Fig.3a). This revealed that 17 years after infection,
IFNy responses to SARS-CoV peptides were still present and were almost
exclusively focused on the N proteinrather than the NSP peptide pools
(Fig.3b).Subsequently, we tested whether the N peptides of SARS-CoV-2
(amino acididentity, 94%) induced IFNy responses in PBMCs fromindi-
viduals whoresolved a SARS-CoVinfection. Indeed, PBMCs fromall 23
individuals tested reacted to N peptides from SARS-CoV-2 (Fig.3c, d).
Totest whether these low-frequency responsesinindividuals who had
recovered from SARS could expand after encountering the N protein of
SARS-CoV-2, the quantity of IFNy-producing cells that responded to the
N, NSP7 and NSP13 proteins of SARS-CoV-2 was analysed after 10 days of
cell cultureinthe presence of the relevant peptides. Seven out of eight
individuals tested showed clear, robust expansion of N-reactive cells
(Fig.3e) and ICS confirmed that individuals who recovered from SARS
had SARS-CoV N-reactive CD4 and CD8 memory T cells" (Extended
DataFig. 6).Incontrastto the response tothe N peptides, we could not
detect any cells that reacted to the peptide pools that covered NSP13
andonly cells from one out of eight individuals reacted to NSP7 (Fig. 3e).

Thus, SARS-CoV-2 N-specific T cells are part of the T cell repertoire
ofindividuals with ahistory of SARS-CoV infection and these T cells are
abletorobustly expand after encountering N peptides of SARS-CoV-2.
These findings demonstrate that virus-specific T cellsinduced by infec-
tion with betacoronaviruses are long-lasting, supporting the notion
that patients with COVID-19 will develop long-term T cell immunity.
Our findings also raise the possibility that long-lasting T cells generated
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Fig.4 |Immunodominance of SARS-CoV-2responsesin patients who
recovered from COVID-19 and SARS, and in unexposed individuals.

a, PBMCs of individuals who were not exposed to SARS-CoV and SARS-CoV-2
(n=37),recovered from SARS (n=23) or COVID-19 (n=36) were stimulated with
peptide pools covering N (N-1,N-2), NSP7 and NSP13 (NSP13-1, NSP13-2, NSP13-3)
of SARS-CoV-2 and analysed by ELISpot. The frequency of peptide-reactive
cellsis shown for each donor (dots or squares) and the bars represent the
median frequency.Squares denote PBMC samples collected before July 2019.
b, The percentage of individuals with N-specific, NSP7 and NSP13-specific
responses, or N-, NSP7-and NSP13-specific responsesin cohort.c, The

after infection with related viruses may be able to protect against, or
modify the pathology caused by, infection with SARS-CoV-2.

SARS-CoV-2-specific T cells inunexposed donors

To explore this possibility, we tested N-, NSP7- and NSP13-peptide-
reactive [FNyresponsesin37 donors who were not exposed to SARS-CoV
and SARS-CoV-2. Donors were either sampled before July 2019 (n=26)
or were serologically negative for both SARS-CoV-2 neutralizing anti-
bodies and SARS-CoV-2 Nantibodies® (n=11). Different coronaviruses
known to cause common colds in humans such as 0C43, HKU1, NL63
and 229E present different degrees of amino acid homology with
SARS-CoV-2 (Extended Data Fig.1and 2) and recent data have shown
the presence of SARS-CoV-2 cross-reactive CD4 T cells (mainly specific
to thespike protein) in donors who were not exposed to SARS-CoV-2*.
Notably, we detected SARS-CoV-2-specific IFNy responsesin19 out of 37
unexposed donors (Fig.4a, b). The cumulative proportion of all studied

composition of the SARS-CoV-2 response in each responding unexposed donor
(n=19)isshown as apercentage of the total detected response. N-1, light blue;
N-2,dark blue; NSP7, orange; NSP13-1, light red; NSP13-2, red; NSP13-3, dark red.
d, Frequency of SARS-CoV-2-reactive cellsin 11 unexposed donors to the
indicated peptide pools directly ex vivo and after a10-day expansion.

e, Apeptide pool matrix strategy was used for three individuals who were not
exposed to SARS-CoV and SARS-CoV-2. The identified T cell epitopes were
confirmed by ICS, and the sequences were aligned to the corresponding
sequence of all coronaviruses known to infect humans.

individuals who responded to peptides covering the N protein and the
ORF1-encoded NSP7 and NSP13 proteins is shown in Fig. 4b. Unexposed
donors showed a distinct pattern of reactivity; whereas individuals
who recovered from COVID-19 and SARS reacted preferentially to N
peptide pools (66% of individuals who recovered from COVID-19 and
91% of individuals who recovered from SARS responded to only the N
peptide pools), the unexposed group showed amixed response to the
N protein or to NSP7 and NSP13 (Fig. 4a-c). In addition, whereas NSP
peptides stimulated adominantresponse inonly 1out of 59 individuals
who hadresolved COVID-19 or SARS, these peptides triggered dominant
reactivity in 9 out of 19 unexposed donors with SARS-CoV-2-reactive
cells (Fig.4cand Extended Data Fig. 7). These SARS-CoV-2-reactive cells
fromunexposed donors had the capacity to expand after stimulation
with SARS-CoV-2-specific peptides (Fig. 4d). We next delineated the
SARS-CoV-2-specific response detected inunexposed donorsin more
detail. Characterization of the N-specific response in one donor (H-2)
identified CD4 T cells that were reactive to an epitope within the region
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ofaminoacids101-120 of the N protein. This epitope was also detected
in patients who recovered from COVID-19 and SARS®*? (Fig. 2b). This
region has a high degree of homology to the sequences of the N pro-
tein of MERS-CoV, 0C43 and HKUI (Fig. 4e). In the same donor, we
analysed PBMCs collected at multiple time points, demonstrating the
persistence of the response to the 101-120 amino acid region of the N
protein over 1year (Extended Data Fig. 8a). In three other donors who
were not exposed to SARS-CoV or SARS-CoV-2, we identified CD4 T cells
specific to the region of amino acids 26-40 of NSP7 (SKLWAQCVQL-
HNDIL; donor H-7) and CD8 T cells specific to an epitope comprising
the region of amino acids 36-50 of NSP7 (HNDILLAKDTTEAFE; H-3,
H-21; Fig. 4e, Extended Data Fig. 8b).

Theselatter two T cell specificities were of particular interest as the
homology between the two protein regions of SARS-CoV, SARS-CoV-2
and other common cold coronaviruses (OC43, HKU1 NL63 and 229E)
was minimal (Fig. 4e), especially for the CD8 T cell epitope. Indeed,
the low-homology peptides that covered the sequences of the com-
mon cold coronaviruses failed to stimulate PBMCs from individuals
with T cells responsive to amino acids 36-50 of NSP7 (Extended Data
Fig.8c). Even though we cannot exclude that some SARS-CoV-2-reactive
T cells might be naive orinduced by completely unrelated pathogens®,
this finding suggests that unknown coronaviruses, possibly of animal
origin, might induce cross-reactive SARS-CoV-2 T cells in the general
population.

We further characterized the NSP7-specific CD4 and CD8 T cells
that were present in the three unexposed individuals. The reactive
T cells expanded efficiently in vitro and mainly produced either both
IFNy and TNF (CD8 T cells) or only IFNy (CD4 T cells) (Extended Data
Fig.9a). We also determined that the CD8 T cells that were specific to
aminoacids 36-50 of NSP7 were HLA-B35-restricted and had an effec-
tor memory/terminal differentiated phenotype (CCR7"CD45RA"")
(Extended DataFig. 9b, c).

Conclusions

Itisunclear why NSP7-and NSP13-specific T cells are detected and often
dominant in unexposed donors, while representing a minor popula-
tion in individuals who have recovered from SARS or COVID-19. It is,
however, consistent with the findings of a previous study”, in which
ORFI1-specificT cells were preferentially detected in some donors who
were not exposed to SARS-CoV-2whereas T cells fromindividuals who
had recovered from COVID-19 preferentially recognized structural pro-
teins. Induction of virus-specific T cells inindividuals who were exposed
but uninfected has been demonstrated in other viral infections?* 2%,
Theoretically, individuals exposed to coronaviruses might just prime
ORF1-specific T cells, as the ORF1-encoded proteins are produced first
incoronavirus-infected cells and are necessary for the formation of the
viral replicase-transcriptase complex that is essential for the subse-
quent transcription of the viralgenome, which then leads to the expres-
sion of various RNA species’®. Therefore, ORF1-specific T cells could
hypothetically abort viral production by lysing SARS-CoV-2-infected
cells before the formation of mature virions. By contrast, in patients
with COVID-19 and SARS, the N protein—whichis abundantly produced
in cells that secrete mature virions’—would be expected to preferen-
tially boost N-specific T cells.

Notably, the ORF1region contains domains that are highly conserved
among many different coronaviruses’. The distribution of these viruses
in different animal species might result in periodic human contact
thatinduces ORF1-specific T cells with cross-reactive abilities against
SARS-CoV-2.Understanding the distribution, frequency and protective
capacity of pre-existing structural or non-structural protein-associated
SARS-CoV-2 cross-reactive T cells could be important for the
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explanation of some of the differencesininfection rates or pathology
observed during this pandemic. T cells that are specific to viral proteins
are protective in animal models of airway infections?, but the possible
effects of pre-existing N-and/or ORF1-specific T cells onthe differential
modulation of SARS-CoV-2infection will have to be carefully evaluated.
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maries, source data, extended data, supplementary information,
acknowledgements, peer review information; details of author con-
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Methods

Datareporting

No statistical methods were used to predetermine sample size. The
experiments were not randomized and the investigators were not
blinded to allocation during experiments and outcome assessment.

Ethics statement

All donors provided written consent. The study was conducted in
accordance with the Declaration of Helsinki and approved by the NUS
Institutional Review Board (H-20-006) and the SingHealth Centralised
Institutional Review Board (reference CIRB/F/2018/2387).

Human samples

Donors were recruited based on their clinical history of SARS-CoV
or SARS-CoV-2 infection. Blood samples of patients who recovered
from COVID-19 (n =36) were obtained 2-28 days after PCR negativ-
ity and of patients who recovered from SARS (n =23) 17 years after
infection. Samples from healthy donors were either collected before
June 2019 for studies of T cell function in viral diseases (n=26), or
in March-April 2020. All healthy donor samples tested negative for
RBD-neutralizing antibodies and negativein an ELISA for NIgG (n=11)".

PBMCisolation

PBMCs wereisolated by density-gradient centrifugation using Ficoll-
Paque.Isolated PBMCs were either studied directly or cryopreserved
and stored in liquid nitrogen until use in the assays.

Peptide pools

We synthesized 15-mer peptides that overlapped by 10 amino acids
and spanned the entire protein sequence of the N, NSP7 and NSP13
proteins of SARS-CoV-2, as well as the N protein of SARS-CoV (GL Bio-
chem Shanghai; see Supplementary Tables 1, 2). To stimulate PBMCs,
the peptides were divided into 5 pools of about 40 peptides covering
N (N-1,N-2) and NSP13 (NSP13-1, NSP13-2, NSP13-3) and one pool of 15
peptides covering NSP7. For single-peptide identification, peptides
were organized in a matrix of 12 numeric and 7 alphabetical pools for
N, and 4 numeric and 4 alphabetical pools for NSP7.

ELISpot assay

ELISpot plates (Millipore) were coated with human IFNy antibody
(1-D1K, Mabtech; 5 pg/ml) overnight at 4 °C. Then, 400,000 PBMCs
were seeded per well and stimulated for 18 h with pools of SARS-CoV
or SARS-CoV-2 peptides (2 pg/ml). For stimulation with peptide matrix
pools or single peptides, a concentration of 5 pug/ml was used. Sub-
sequently, the plates were developed with human biotinylated IFNy
detection antibody (7-B6-1, Mabtech; 1:2,000), followed by incuba-
tion with streptavidin-AP (Mabtech) and KPL BCIP/NBT Phosphatase
Substrate (SeraCare). Spot forming units (SFU) were quantified
with ImmunoSpot. To quantify positive peptide-specific responses,
2x mean spots of the unstimulated wells were subtracted from the
peptide-stimulated wells, and the results expressed as SFU/10° PBMCs.
Weexcluded the resultsif negative control wells had >30 SFU/10¢ PBMCs
or positive control wells (phorbol12-myristate 13-acetate/ionomycin)
were negative.

Flow cytometry

PBMCs or expanded T cell lines were stimulated for 5 h at 37 °C with
or without SARS-CoV or SARS-CoV-2 peptide pools (2 pg/ml) in the
presence of 10 pg/ml brefeldin A (Sigma-Aldrich). Cells were stained
with the yellow LIVE/DEAD fixable dead cell stain kit (Invitrogen) and
anti-CD3 (clone SK7; 3:50), anti-CD4 (clone SK3; 3:50) and anti-CD8
(clone SK1; 3:50) antibodies. For analysis of the T cell differentiation
status, cells were additionally stained with anti-CCR7 (clone 150503;
1:10) and anti-CD45RA (clone HI100; 1:10) antibodies. Cells were

subsequently fixed and permeabilized using the Cytofix/Cytoperm kit
(BD Biosciences-Pharmingen) and stained with anti-IFNy (clone 25723,
R&D Systems; 1:25) and anti-TNF (clone MAb11; 1:25) antibodies and
analysed onaBD-LSRIIFACS Scan. Data were analysed by FlowJo (Tree
Star). Antibodies were purchased from BD Biosciences-Pharmingen
unless otherwise stated.

ExpandedT celllines

Tcelllines were generated as follows: 20% of PBMCs were pulsed with
10 pg/mlofthe overlapping SARS-CoV-2 peptides (all pools combined)
or single peptides for 1 h at 37 °C, washed and cocultured with the
remaining cells in AIM-V medium (Gibco; Thermo Fisher Scientific)
supplemented with 2% AB human serum (Gibco; Thermo Fisher Sci-
entific). T cell lines were cultured for 10 days in the presence of 20 U/
ml of recombinantIL-2 (R&D Systems).

HLA-restriction assay

The HLA type of healthy donor H-3 was determined and different
Epstein-Barr virus (EBV)-transformed B cells lines with one common
allele each were selected for presentation of peptide NSP7(36-50)
(see below). B cells were pulsed with 10 pg/ml of the peptide for 1 h at
37 °C,washed three times and cocultured with the expanded T cell line
ataratio of 1:1inthe presence of 10 pg/ml brefeldin A (Sigma-Aldrich).
Non-pulsed B cell lines served as a negative control for the detection
of potential allogeneic responses and autologous peptide-pulsed cells
served as a positive control. The HLA class I haplotype of the differ-
ent B cell lines: CM780, A*24:02, A*33:03, B*58:01, B*55:02, Cw*07:02,
Cw*03:02; WGP48, A*02:07, A*11:01, B*15:25, B*46:01, Cw*01:02,
Cw*04:03; NP378, A*11:01, A*33:03, B*51:51, B*35:03, Cw*07:02,
Cw*14:02; NgaBH, A*02:01, A*33:03, B*58:01, B*13:01, Cw*03:02.

Sequence alignment

Reference protein sequences for ORFlab (accession numbers:
QHD43415.1, NP_828849.2, YP_009047202.1, YP_009555238.1,
YP_173236.1, YP_003766.2 and NP_073549.1) and the N protein
(accession numbers: YP_009724397.2, AAP33707.1, YP_009047211.1,
YP_009555245.1, YP_173242.1, YP_003771.1 and NP_073556.1) were
downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov/
protein/). Sequences were aligned using the MUSCLE algorithm with
default parameters and percentage identity was calculated in Geneious
Prime 2020.1.2 (https://www.geneious.com). Alignment figures were
made in Snapgene 5.1 (GSL Biotech).

Surrogate virus neutralization assay

A surrogate virus-neutralization test was used. Specifically, this test
measures the quantity of anti-spike antibodies that block protein-pro-
tein interactions between the receptor-binding domain of the spike
protein and the human ACE2 receptor using an ELISA-based assay®.

Statistical analyses
Allstatistical analyses were performed in Prism (GraphPad Software);
details are provided in the figure legends.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Reference protein sequences for ORFlab (accession numbers:
QHD43415.1, NP_828849.2, YP_009047202.1, YP_009555238.1,
YP_173236.1, YP_003766.2 and NP_073549.1) and the N protein
(accession numbers: YP_009724397.2, AAP33707.1, YP_009047211.1,
YP_009555245.1, YP_173242.1, YP_003771.1 and NP_073556.1) were
downloaded from the NCBI database (https://www.ncbi.nlm.nih.gov/
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protein/). All data are available in the Article or the Supplementary
Information. Source data are provided with this paper.

29. Tan,C.W.etal. A SARS-CoV-2 surrogate virus neutralization test based on
antibody-mediated blockage of ACE2-spike protein-protein interaction. Nat. Biotechnol.
https://doi.org/10.1038/s41587-020-0631-z (2020).
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Extended DataFig.1|Sequencealignmentofthe N proteinfromalltypesof  Conservedresiduesare highlightedinyellow and the degree of conservationis
human coronaviruses. Amino acid sequences for the N protein were indicated by the coloured barsabove.
downloaded from the NCBI database and aligned using the MUSCLE algorithm.
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b IVNQERYVKITGLYPTITVPEEFASHVANFQKSGYSKYVTVQGPPGTGKSHFAIGLALIYYPTARVVYTACSHAAVDALCEKAFKYLNIAKCSRIIPAKARVECYDRFKVNETNSQYLFST 359
4 LVPQENYSSI-RFASVYSVLETFQNNVVNYQHIGMKRYCTVQGPPGTGKSHLAIGLAVFYCTARVVYTAASHAAVDALCEKAYKFLNINDCTRIVPAKVRVECYDKFKINDTTRKYVFTT 358
5 LVPQENYASI-RFSSVYSVPLVFQNNVANYQHIGMKRYCTVQGPPGTGKSHLAIGLAVYYYTARVVYTAASHAAVDALCEKAYKFLNINDCTRIIPAKVRVDCYDKFKINDTTCKYVFTT 358
6 IANQEKYSSIYKLHPAFNVSDAYANLVPYYQLIGKQKITTIQGPPGSGKSHCSIGLGLYYPGARIVFVACAHAAVDSLCAKAMTVYSIDKCTRIIPARARVECYSGFKPNNTSAQYIFST 360
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1 VNALPETTADIVVFDEISMATNYDLSVVNARLRAKHYVYIGDPAQLPAPRTLLTKGTLEPEYFNSVCRLMKTIGPDMFLGTCRRCPAEIVDTVSALVYDNKLKAHKDKSAQCFKMFYKGY 479
2 VNALPETTADIVVFDEISMATNYDLSVVNARLRAKHYVYIGDPAQLPAPRTLLTKGTLEPEYFNSVCRLMKTIGPDMFLGTCRRCPAEIVDTVSALVYDNKLKAHKDKSAQCFKMFYKGY 479
3 INALPETSADILVVDEVSMCTNYDLSIINARIKAKHIVYVGDPAQLPAPRTLLTRGTLEPENFNSVTRLMCNLGPDIFLSMCYRCPKEIVSTVSALVYNNKLLAKKELSGQCFKILYKGN 479
4 INALPEMVTDIVVVDEVSMLTNYELSVINARIRAKHYVYIGDPAQLPAPRVLLSKGTLEPKYFNTVTKLMCCLGPDIFLGTCYRCPKEIVDTVSALVYENKLKAKNESSSLCFKVYYKGV 478
B INALPELVTDIVVVDEVSMLTNYELSVINARIKAKHYVYIGDPAQLPAPRVLLSKGSLEPRHFNSITKIMCCLGPDIFLGNCYRCPKEIVETVSALVYDNKLKAKNDNSSLCFKVYFKGQ 478
] VNALPECNADIVVVDEVSMCTNYDLSVINQRLSYKHIVYVGDPQQLPAPRVMITKGVMEPVDYNVVTQRMCAIGPDVFLHKCYRCPAEIVNTVSELVYENKFVPVKPASKQCFKVFFKGN 480
7 VNALPEVNADIVVVDEVSMCTNYDLSVINQRISYKHIVYVGDPQQLPAPRVLISKGVMEPIDYNVVTQRMCAIGPDVFLHKCYRCPAEIVNTVSELVYENKFVPVKEASKQCFKIFERGS 480
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- ITHDVSSAINRPQIGVVREFLTRNPAWRKAVFISPYNSQNAVASKILGLPTQTVDSSQGSEYDYVIFTQTTETAHSCNVNRFNVAITRAKVGILCIMSDRDLYDKLQFTSLEIPRRNVAT 593
2 ITHDVSSAINRPQIGVVREFLTRNPAWRKAVFISPYNSQNAVASKILGLPTQTVDSSQGSEYDYVIFTQTTETAHSCNVNRFNVAITRAKIGILCIMSDRDLYDKLQFTSLEIPRRNVAT 599
& VTHDASSAINRPQLTFVKNFITANPAWSKAVFISPYNSQNAVSRSMLGLTTQTVDSSQGSEYQYVIFCQTADTAHANNINRFNVAITRAQKGILCVMTSQALFESLEFTELSFTNYKL-- 597
4 TTHESSSAVNMQQIYLINKFLKANPLWHKAVFISPYNSQNFAAKRVLGLQTQTVDSAQGSEYDYVIYSQTAETAHSYNVNRFNVAITRAKKGILCVMSNMQLFEALQFTTLTLDKVPQAYV 598
5 TTHESSSAVNIQQIYLISKFLKANPVWNSAVFISPYNSQNYVAKRVLGVQTQTVDSAQGSEYDYVIYSQTAETAHSVNVNRFNVAITRAKKGIFCVMSNMQLFESLNFITLPLDKIQNQT 598
6 VQVDNGSSINRKQLEIVKLFLVKNPSWSKAVFISPYNSQNYVASRFLGLQIQTVDSSQGSEYDYVIYAQTSDTAHACNVNRFNVAITRAKKGIFCVMCDKTLFDSLKFFEIKHADL---- 596
7 VQVDNGSSINRRQLDVVKRFIHKNSTWSKAVFISPYNSQNYVAARLLGLQTQTVDSAQGSEYDYVIFAQTSDTAHACNANRFNVAITRAKKGIFCIMSDRTLFDALKFFEITMTODL---- 59
Extended DataFig.2|Sequencealignment of the ORF1-encoded NCBI database and aligned using the MUSCLE algorithm. The alignment for
non-structural proteinsNSP7 and NSP13 from all types of human NSP7 and NSP13isshown.

coronaviruses. Protein sequences for ORFlab were downloaded from the
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Extended DataFig. 4 |IFNyand TNF production profile of SARS-CoV-2-
specific T cells of patients who recovered from COVID-19. PBMCs from

patientsrecovered from COVID-19 (n=7) were stimulated with the peptide

poolscovering N (NP-1, NP-2) for 5hand analysed by intracellular cytokine

staining for IFNy and TNF. Dot plots show examples of patients with CD8 (top)

or CD4 (bottom) T cells that produced IFNyand/or TNF inresponse to
stimulationwith N-1or N-2 peptide pools. The bars show the respective single
and double cytokine producing T cells asa proportion of the total detected
response after stimulation with the corresponding N peptide poolsineach
patientwhorecovered from COVID-19.
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Extended DataFig. 5| Correlation analysis of SARS-CoV-2-specificIFNy coefficients (Spearman correlation) are indicated. Patients who present with
responses with the presence of virus-neutralizing antibodies, duration of mild (grey), moderate (orange) or severe (red) disease are indicated.
infection and disease severity. a,b, The magnitude of SARS-CoV-2-specific ¢, Magnitude of SARS-CoV-2-specific responses stratified by mild (n=26),
responses, as quantified by IFNy ELISpot, against all (N, NSP7 and NSP13) moderate (n=5) and severe (n=>5) disease. The bars represent the median
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correlated with the level of virus-neutralizing antibodies assayed using a changes, not requiring oxygen supplement. Moderate disease, oxygen
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Extended DataFig. 6 | Analysis of SARS-CoV Nresponse. PBMCs of patient
S-20 were expanded for 10 days and the frequency of T cells specific for the N-1
peptide pool were analysed by intracellular cytokine staining for IFNyand TNF.
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Extended DataFig. 8 |Identification of SARS-CoV-2 epitopesindonors who
were not exposed to SARS-CoV and SARS-CoV-2. a, Longitudinal analysis of
the SARS-CoV-2N(101-120) response inindividual H-2. PBMCs collected at the
stated time points were stimulated with peptides spanning amino acids 101-
120 of the N protein and assayed by IFNy ELISpot. The frequencies of IFNy SFU
areshown. b, PBMCs were stimulated with the single peptides identified by the
peptide matrixin parallel with the neighbouring peptides and assayed by IFNy
ELISpot. The amino acid residues are shown on the left; the frequency of IFNy

SFUontheright. Activating peptides areindicated inred and neighbouring
peptidesinblack.c,PBMCs fromindividuals H-3 and H-21 were stimulated with
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0C43,HKU1,NL63 and 229E and analysed ex vivo by IFNy ELISpot. ANSP7
(36-50) T cellline expanded from individual H-3 was also tested with the
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sequences of the various peptides are shownin the table. Conserved amino
acids are highlighted inyellow.
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Extended Data Table 1| Donor characteristics

COVID-19 SARS SARS-CoV-1/2
recovered recovered unexposed
Number 36 23 37
Median age in years 42 49 39
(range) (27-78) (21-67) (28-63)

Gender
Male 72% (26/36) 26% (6/23) 62% (23/37)
Female 28% (10/36) 74% (17/23) 38% (14/37)

Residence
Singapore 100% 100% 100%

Ethnicity
Chinese 38.9% (14/36) 43.5% (10/23) 62.2% (23/37)
Caucasian 27.8% (10/36) 0% (0/23)  16.2% (6/37)
Indian 25.0% (9/36) 21.7% (5/23)  8.1% (3/37)
Bangladeshi 5.6% (2/36) 0% (0/23) 0% (0/37)
Japanese 2.8% (1/36) 0% (0/23) 0% (0/37)
Malay 0% (0/36)  30.4%(7/23)  13.5% (5/37)
Ceylonese 0% (0/36) 4.3% (1/23) 0% (0/37)

*Disease Severity
Mild 72.2% (26/36) 73.9% (17/23) N/A
Moderate 13.9% (5/36) 13% (3/23) N/A
Severe 13.9% (5/36) 13% (3/23) N/A
Critical 0% (0/24) 0 N/A

Virological parameters

SARS-CoV-1 PCR positive N/A 100% N/A
SARS-CoV-2 PCR positivity 100% N/A N/A
2SARS-CoV-2 NP Ig positivity 100% 100% 0%
“SARS-CoV-2 RBD Ig positivity 100% 0% 0%
Time since PCR negativity 2-28 days 17 years N/A

*Disease severity is defined as follows. Mild, with or without chest radiograph changes; not requiring oxygen supplement. Moderate, oxygen supplement less than 50%. Severe, oxygen
supplement 50% or more or high-flow oxygen or intubation.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
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The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

< < x| [0 [x [ ][]0
N 3 I B B I O Y R TR Y

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis Graphpad Prism 7; Flowjo Version 10.6.2; ImmunoSpot 7.0.26.0
Viral sequences were aligned using the MUSCLE algorithm (3.8.425) with default parameters and percentage identity was calculated in
Geneious Prime 2020.1.2 (https://www.geneious.com). Alignment figures were made in Snapgene 5.1 (GSL Biotech).

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Coronavirus reference protein sequences for ORFlab and Nucleocapsid Protein were downloaded from the NCBI database. All other data are included in this
manuscript.
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Sample size Aim of the study was to characterize SARS-CoV-2-specific T cells in patients who recovered from SARS 17 years ago. 23 of those individuals
gave informed consent and were available to donate blood samples. Therefore similar numbers of COVID-19 convalescents and non-infected
controls were selected.
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Data exclusions No data points were excluded.
Replication We evaluated the SARS-CoV-2 specific T cell responses in 36 COVID-19 convalescents, in 23 SARS-recovered, and in 37 uninfected donors.
Randomization No randomization was used in this study, since we are comparing 3 different well defined cohorts: COVID-19 convalescents, SARS recovered

patients and SARS-CoV-1/2 non-exposed individuals.

Blinding Blinding was not done for this study. The groups were defined by their infection history and studied by the investigators using standard
protocols.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods

Involved in the study n/a | Involved in the study
Antibodies [x]|[ ] chiP-seq

Eukaryotic cell lines D E] Flow cytometry
Palaeontology and archaeology D MRI-based neuroimaging
Animals and other organisms

Human research participants

Clinical data
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Antibodies

Antibodies used ELISpot: IFN-y coating antibody (clone: 1-D1K, MabTech, Cat. Nr. 3420-3-1000); biotinylated IFN-y detection antibody (clone: 7-B6-1,
MabTech, Cat. Nr: 3420-6-1000)
Flow cytometry: anti-human CD3-PerCP-cy5.5 (BD Pharmingen, clone: SK7, Cat. Nr: 340949); anti-human CD4-PECy7 (BD
Pharmingen, clone: SK3, Cat. Nr: 557852); anti-human CD8-APC-Cy7 (BD Pharmingen, clone: SK1, Cat. Nr: 557834); anti-human TNFa-
APC (BD Pharmingen, clone: MAb11, Cat. Nr: 554514); anti-human IFNg-PE (R&D Systems, clone: 25273, Cat. Nr: IC285P); anti-human
CCR7-BV421 (BD Pharmingen, clone: 150503, Cat. Nr: 562555); anti-human CD45RA-FITC (BD Pharmingen, clone: HI100, Cat. Nr:
555488)

Validation All antibodies were obtained from commercial vendors and we based specificity on descriptions and information provided in

corresponding Data Sheets available and provided by the Manufacturers.




Human research participants

Policy information about studies involving human research participants

Population characteristics The characteristics of the human research participants are described in Extended Data Table 1 of the manuscript.

Recruitment All donors were recruited based on the infection history. COVID-19 convalescents were previously PCR positive for SARS-
CoV-2; SARS-recovered donors were tested PCR positive 17 years ago for SARS-CoV. Written informed consent was obtained
from all subjects. All donors were recruited and resident in Singapore, were of mixed ethnicity and age.

Ethics oversight Written informed consent was obtained from all subjects. The study was conducted in accordance with the Declaration of
Helsinki and approved by the NUS institutional review board (H-20-006); SingHealth Centralised Institutional Review Board
(reference CIRB/F/2018/2387)

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Flow Cytometry

Plots
Confirm that:
The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

E A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation PBMC and T cell lines were prepared and stained according to standard protocols

Instrument BD-LSR Il FACS Scan

Software Flowjo Version 10.6.2

Cell population abundance N/A. No sorting was performed.

Gating strategy Gating strategy: live cells (yellow LIVE/DEAD positive cells were excluded); singlets (SSC-H/SSC-A); Lymphocytes (FSC-A/SSCA);

CD3+ (CD-3-PerPC-Cy5.5/CD8-APC-Cy7); CD4+ and CD8+ (CD4--PECy7/CD8-APC-Cy7); IFNg+ and TNFa+ gates were based
on the unstimulated control sample.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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